MDP BASED OPTIMAL POLICY FOR COLLABORATIVE PROCESSING USING MOBILE CLOUD COMPUTING

MONA NASSERI (UT), ROBERT GREEN (BGSU), AND MANSOOR ALAM (UT)

UNIVERSITY OF TOLEDO (UT)
BOWLING GREEN STATE UNIVERSITY (BGSU)
PROBLEM STATEMENT

Question:
• How can mobile phones collaborate with each other in order to complete a particular task in a more efficient manner?

Answer:
• Through a combination of Mobile Cloud Computing, Collaborative Networking, and Markov Decision Processes and look-up tables (of course)!
MOBILE CLOUD COMPUTING

Definition:
• A combination of cloud computing and mobile environments

✓ Useful for off-loading and sharing the various burdens related to complex computation and/or data storage.

✓ Offloading (or Cyber foraging) enables the mobile devices to offload tasks by leveraging unused sources on larger computers.
COLLABORATIVE NETWORKING

Definition:

• A collaborative network refers to an ad-hoc network system that is formed by users in close proximity to one another

✓ Pooling their resources

✓ Reducing overall load on a single device by using the other devices as mobile data relays.
MARKOV DECISION PROCESS

- MDP is a promising solution to combat calculation complexities as a mathematical framework
- Used to create decision tables, including outcomes which are partly random and partially dependent on user decisions
- MDP has a decision agent which checks the current state, s, repeatedly, take the decision to do action a with probability p which leads to the transition to state s' including a reward, r
MARKOV DECISION PROCESS

MDP Parameters

• **S - State Space:** All possible states of the system, which are known to the decision-maker.

• **A - All possible actions that can be taken by the decision-maker**

• **R - Reward:** The reward for taking action \(a \) in a state \(s \).

• **P - Transition Probability:** The probability that an action \(a \) taken in state \(s \) at time \(t \) will result in a transition to state \(s' \) in time \(t + 1 \).
PROPOSED METHOD

Collaborative downloading

- There are *n* phones. Some ask other mobile devices to help in the downloading process.

Helpers can

- **Accept** the request and collaborate
- **Reject** the request to download the file
- **Relay** in order to send a file to a destination.
PROPOSED METHOD

1. Mobile node (Requester)
2. Finding potential Helpers based on battery level
3. Send requests
4. Identifying Requesters
5. Mobile node (Helper)
6. Find action A
7. Evaluate the Rewards
8. Compare two last rewards
9. Meet the criteria?
 - No
 - Yes
10. MDP Based Optimal Policy
11. Execute the action
REQUESTER SIDE
POLICY

• The requester’s decision is established on a threshold policy that is based on an individual phone’s determination of how conservative it wants to be in saving its charge for future communications.

• Each phone determines its E_{th} (energy-threshold) and E_i (current energy level) and sends it to service provider.

• The requesting phones use the server’s look up tables in order to choose which helper should send a request.

$$E = \begin{bmatrix} E_{i1} & E_{th1} \\ \vdots & \vdots \\ E_{in} & E_{thn} \end{bmatrix}$$
REQUESTER SIDE POLICY

If $E_i - E_{th} > e_o + e_d + e_f$, then its identification term will be saved at E_{sel} matrix according to their conditions from excellent to fair

- e_o: Energy overhead for establishing collaboration
- e_d: Download energy cost
- e_f: Energy for helper to forward download

$$E_{sel} = \begin{bmatrix} k = excellent \\ \vdots \\ m = fair \end{bmatrix}$$
REQUESTER SIDE POLICY

- The matrix, E, is saved at the server and is updated each T minutes.

- E_{sel} will be sent to the requester in order to aid in choosing the helper phone.

- Messages are only sent to those potential helpers identified by the requestor.
HELPER SIDE POLICY

• The helper phone must decide to accept or reject the request that is presented by a requester.

• If the number of requests increases, the helper can choose one request according to calculated rewards.

• In an environment that includes several requests, a helper can accept one request and reject others or reject all of them based on the results of the MDP.
HELPER SIDE POLICY

MDP Parameters:

• \(A = \{ a_{i,j} \} \in \{ 0, 1 \} \)
• \(s \in S\{ P, N, T \} \)
 • \(P = \{ 1, 2, 3, \ldots, p_{\text{max}} \} \) in mw
 • \(N = \{ 1, 2, 3 \} \) number of bars or received signal code power (RSCP) level; and
 • \(T = \) Time since last recharge
HELPER SIDE POLICY

Reward Components

Power Reward

\[f_p(s, a) = \frac{1}{1 + \exp(p_a)} \]

Delay Reward

\[f_d(s, a) = \frac{1}{1 + \exp(d_a)} \]

Transition Cost Function

\[h(s, a) = \begin{cases} H_{i,j} & i \neq j \\ 0 & i = j \end{cases} \]
HELPER SIDE POLICY

Reward Function

\[f(s,a) = w_p \times f_p(s,a) + w_d \times f_d(s,a) \]

\[\sum_m w_m = 1 \]

\[r(s,a) = f(s,a) - h(s,a) \]
$C(r) = \ln(r) + 1$

- Should be scaled in credit domain ($\text{credit}_{\text{min}}, \text{credit}_{\text{max}}$).
- 1 is added to show each activity includes credit.
CREDIT EXCHANGE
RESULTS

Initial Results
• Impact of Helper Requests
• Impact of Power Reward
• Impact of Delay Reward

Simulation Results
• Simulation Network
• Rewards under Varying Power Consumption
• Credits Received under Varying Power Consumption
INITIAL RESULTS

A message with content of “Download Request” is sent to different Iphone 4s using a 3G network.
INITIAL RESULTS

Fixed Power Consumption

- Delay weight factor = 1/4
- Delay weight factor = 2/4
- Delay weight factor = 1

Graph showing fixed power consumption over delay (minutes) with different delay weight factors.
INITIAL RESULTS

Fixed Delay

![Graph showing power consumption and maximum reward value for different power weight factors. The graph compares power weight factor=1, power weight factor=3/4, and power weight factor=1/2. The x-axis represents power consumption, and the y-axis represents maximum reward value. The graph includes data points for each power weight factor, with distinct markers for each.]
INITIAL RESULTS

Relation between power, delay, and reward
RESULTS

Simulated Network

Area containing 4 Helper and 4 Requester
RESULTS

Maximum Reward Comparison

![Graph showing maximum reward comparison over delay with different power consumption settings.]
RESULTS

Credit Evaluation

![Graph showing credit evaluation over delay with different power consumption levels.](image)
SUMMARY AND CONCLUSION

• **Optimal policies** for mobile cloud computing on both the requester and helper sides are presented.

• The policy on requester side is based on differences of energy threshold and battery level of the helper mobile device.

• The policy on helper side is based on MDP and maximum calculated reward through iteration algorithm.

• Simulation shows less delay at responding to a request and less power consumption, resulting in higher amount of rewards.

• Potential future work may include applying SMDP instead of MDP in order to achieve more realistic results, evaluating larger networks, and other applications.
Thank you